Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
J Clin Immunol ; 43(5): 869-881, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2282518

ABSTRACT

PURPOSE: Humoral and cellular immune responses were described after COVID-19 vaccination in patients with common variable immunodeficiency disorder (CVID). This study aimed to investigate SARS-CoV-2-specific antibody quality and memory function of B cell immunity as well as T cell responses after COVID-19 vaccination in seroresponding and non-responding CVID patients. METHODS: We evaluated antibody avidity and applied a memory B cell ELSPOT assay for functional B cell recall memory response to SARS-CoV-2 after COVID-19 vaccination in CVID seroresponders. We comparatively analyzed SARS-CoV-2 spike reactive polyfunctional T cell response and reactive peripheral follicular T helper cells (pTFH) by flow cytometry in seroresponding and non-seroresponding CVID patients. All CVID patients had previously failed to mount a humoral response to pneumococcal conjugate vaccine. RESULTS: SARS-CoV-2 spike antibody avidity of seroresponding CVID patients was significantly lower than in healthy controls. Only 30% of seroresponding CVID patients showed a minimal memory B cell recall response in ELISPOT assay. One hundred percent of CVID seroresponders and 83% of non-seroresponders had a detectable polyfunctional T cell response. Induction of antigen-specific CD4+CD154+CD137+CXCR5+ pTFH cells by the COVID-19 vaccine was higher in CVID seroresponder than in non-seroresponder. Levels of pTFH did not correlate with antibody response or avidity. CONCLUSION: Reduced avidity and significantly impaired recall memory formation after COVID-19 vaccination in seroresponding CVID patients stress the importance of a more differentiated analysis of humoral immune response in CVID patients. Our observations challenge the clinical implications that follow the binary categorization into seroresponder and non-seroresponder.


Subject(s)
COVID-19 , Common Variable Immunodeficiency , Humans , Memory B Cells , COVID-19 Vaccines , Antibody Affinity , Common Variable Immunodeficiency/therapy , SARS-CoV-2 , Vaccination , Antibodies, Viral
2.
Front Immunol ; 13: 981532, 2022.
Article in English | MEDLINE | ID: covidwho-2115313

ABSTRACT

Most patients with Post COVID Syndrome (PCS) present with a plethora of symptoms without clear evidence of organ dysfunction. A subset of them fulfills diagnostic criteria of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Symptom severity of ME/CFS correlates with natural regulatory autoantibody (AAB) levels targeting several G-protein coupled receptors (GPCR). In this exploratory study, we analyzed serum AAB levels against vaso- and immunoregulatory receptors, mostly GPCRs, in 80 PCS patients following mild-to-moderate COVID-19, with 40 of them fulfilling diagnostic criteria of ME/CFS. Healthy seronegative (n=38) and asymptomatic post COVID-19 controls (n=40) were also included in the study as control groups. We found lower levels for various AABs in PCS compared to at least one control group, accompanied by alterations in the correlations among AABs. Classification using random forest indicated AABs targeting ADRB2, STAB1, and ADRA2A as the strongest classifiers (AABs stratifying patients according to disease outcomes) of post COVID-19 outcomes. Several AABs correlated with symptom severity in PCS groups. Remarkably, severity of fatigue and vasomotor symptoms were associated with ADRB2 AAB levels in PCS/ME/CFS patients. Our study identified dysregulation of AAB against various receptors involved in the autonomous nervous system (ANS), vaso-, and immunoregulation and their correlation with symptom severity, pointing to their role in the pathogenesis of PCS.


Subject(s)
COVID-19 , Fatigue Syndrome, Chronic , Autoantibodies , Humans
3.
Frontiers in immunology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-2058500

ABSTRACT

Most patients with Post COVID Syndrome (PCS) present with a plethora of symptoms without clear evidence of organ dysfunction. A subset of them fulfills diagnostic criteria of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Symptom severity of ME/CFS correlates with natural regulatory autoantibody (AAB) levels targeting several G-protein coupled receptors (GPCR). In this exploratory study, we analyzed serum AAB levels against vaso- and immunoregulatory receptors, mostly GPCRs, in 80 PCS patients following mild-to-moderate COVID-19, with 40 of them fulfilling diagnostic criteria of ME/CFS. Healthy seronegative (n=38) and asymptomatic post COVID-19 controls (n=40) were also included in the study as control groups. We found lower levels for various AABs in PCS compared to at least one control group, accompanied by alterations in the correlations among AABs. Classification using random forest indicated AABs targeting ADRB2, STAB1, and ADRA2A as the strongest classifiers (AABs stratifying patients according to disease outcomes) of post COVID-19 outcomes. Several AABs correlated with symptom severity in PCS groups. Remarkably, severity of fatigue and vasomotor symptoms were associated with ADRB2 AAB levels in PCS/ME/CFS patients. Our study identified dysregulation of AAB against various receptors involved in the autonomous nervous system (ANS), vaso-, and immunoregulation and their correlation with symptom severity, pointing to their role in the pathogenesis of PCS.

4.
Cells ; 11(15)2022 08 02.
Article in English | MEDLINE | ID: covidwho-1969103

ABSTRACT

A proportion of COVID-19 reconvalescent patients develop post-COVID-19 syndrome (PCS) including a subgroup fulfilling diagnostic criteria of Myalgic encephalomyelitis/Chronic Fatigue Syndrome (PCS/CFS). Recently, endothelial dysfunction (ED) has been demonstrated in these patients, but the mechanisms remain elusive. Therefore, we investigated the effects of patients' sera on endothelia cells (ECs) in vitro. PCS (n = 17), PCS/CFS (n = 13), and healthy controls (HC, n = 14) were screened for serum anti-endothelial cell autoantibodies (AECAs) and dysregulated cytokines. Serum-treated ECs were analysed for the induction of activation markers and the release of small molecules by flow cytometry. Moreover, the angiogenic potential of sera was measured in a tube formation assay. While only marginal differences between patient groups were observed for serum cytokines, AECA binding to ECs was significantly increased in PCS/CFS patients. Surprisingly, PCS and PCS/CFS sera reduced surface levels of several EC activation markers. PCS sera enhanced the release of molecules associated with vascular remodelling and significantly promoted angiogenesis in vitro compared to the PCS/CFS and HC groups. Additionally, sera from both patient cohorts induced the release of molecules involved in inhibition of nitric oxide-mediated endothelial relaxation. Overall, PCS and PCS/CFS patients' sera differed in their AECA content and their functional effects on ECs, i.e., secretion profiles and angiogenic potential. We hypothesise a pro-angiogenic effect of PCS sera as a compensatory mechanism to ED which is absent in PCS/CFS patients.


Subject(s)
COVID-19 , Fatigue Syndrome, Chronic , Biomarkers , COVID-19/complications , Cytokines , Fatigue Syndrome, Chronic/metabolism , Humans , Post-Acute COVID-19 Syndrome
5.
Front Immunol ; 13: 840126, 2022.
Article in English | MEDLINE | ID: covidwho-1775673

ABSTRACT

Morbidity and mortality of COVID-19 is increased in patients with inborn errors of immunity (IEI). Age and comorbidities and also impaired type I interferon immunity were identified as relevant risk factors. In patients with primary antibody deficiency (PAD) and lack of specific humoral immune response to SARS-CoV-2, clinical disease outcome is very heterogeneous. Despite extensive clinical reports, underlying immunological mechanisms are poorly characterized and levels of T cellular and innate immunity in severe cases remain to be determined. In the present study, we report clinical and immunological findings of 5 PAD patients with severe and fatal COVID-19 and undetectable specific humoral immune response to SARS-CoV-2. Reactive T cells to SARS-CoV-2 spike (S) and nucleocapsid (NCAP) peptide pools were analyzed comparatively by flow cytometry in PAD patients, convalescents and naïve healthy individuals. All examined PAD patients developed a robust T cell response. The presence of polyfunctional cytokine producing activated CD4+ T cells indicates a memory-like phenotype. An analysis of innate immune response revealed elevated CD169 (SIGLEC1) expression on monocytes, a surrogate marker for type I interferon response, and presence of type I interferon autoantibodies was excluded. SARS-CoV-2 RNA was detectable in peripheral blood in three severe COVID-19 patients with PAD. Viral clearance in blood was observed after treatment with COVID-19 convalescent plasma/monoclonal antibody administration. However, prolonged mucosal viral shedding was observed in all patients (median 67 days) with maximum duration of 127 days. PAD patients without specific humoral SARS-CoV-2 immunity may suffer from severe or fatal COVID-19 despite robust T cell and normal innate immune response. Intensified monitoring for long persistence of SARS-CoV-2 viral shedding and (prophylactic) convalescent plasma/specific IgG as beneficial treatment option in severe cases with RNAemia should be considered in seronegative PAD patients.


Subject(s)
COVID-19 , Interferon Type I , Primary Immunodeficiency Diseases , Antibodies, Viral , COVID-19/therapy , Humans , Immunity, Humoral , Immunization, Passive , RNA, Viral , SARS-CoV-2 , T-Lymphocytes , COVID-19 Serotherapy
6.
J Transl Med ; 20(1): 138, 2022 03 22.
Article in English | MEDLINE | ID: covidwho-1759761

ABSTRACT

BACKGROUND: Fatigue, exertion intolerance and post-exertional malaise are among the most frequent symptoms of Post-COVID Syndrome (PCS), with a subset of patients fulfilling criteria for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). As SARS-CoV-2 infects endothelial cells, causing endotheliitis and damaging the endothelium, we investigated endothelial dysfunction (ED) and endothelial biomarkers in patients with PCS. METHODS: We studied the endothelial function in 30 PCS patients with persistent fatigue and exertion intolerance as well as in 15 age- and sex matched seronegative healthy controls (HCs). 14 patients fulfilled the diagnostic criteria for ME/CFS. The other patients were considered to have PCS. Peripheral endothelial function was assessed by the reactive hyperaemia index (RHI) using peripheral arterial tonometry (PAT) in patients and HCs. In a larger cohort of patients and HCs, including post-COVID reconvalescents (PCHCs), Endothelin-1 (ET-1), Angiopoietin-2 (Ang-2), Endocan (ESM-1), IL-8, Angiotensin-Converting Enzyme (ACE) and ACE2 were analysed as endothelial biomarkers. RESULTS: Five of the 14 post-COVID ME/CFS patients and five of the 16 PCS patients showed ED defined by a diminished RHI (< 1.67), but none of HCs exhibited this finding. A paradoxical positive correlation of RHI with age, blood pressure and BMI was found in PCS but not ME/CFS patients. The ET-1 concentration was significantly elevated in both ME/CFS and PCS patients compared to HCs and PCHCs. The serum Ang-2 concentration was lower in both PCS patients and PCHCs compared to HCs. CONCLUSION: A subset of PCS patients display evidence for ED shown by a diminished RHI and altered endothelial biomarkers. Different associations of the RHI with clinical parameters as well as varying biomarker profiles may suggest distinct pathomechanisms among patient subgroups.


Subject(s)
COVID-19 , Fatigue Syndrome, Chronic , Biomarkers , COVID-19/complications , Endothelial Cells , Endothelium , Humans , SARS-CoV-2 , Post-Acute COVID-19 Syndrome
7.
Front Immunol ; 12: 687449, 2021.
Article in English | MEDLINE | ID: covidwho-1332119

ABSTRACT

Despite RT-PCR confirmed COVID-19, specific antibodies to SARS-CoV-2 spike are undetectable in serum in approximately 10% of convalescent patients after mild disease course. This raises the question of induction and persistence of SARS-CoV-2-reactive T cells in these convalescent individuals. Using flow cytometry, we assessed specific SARS-CoV-2 and human endemic coronaviruses (HCoV-229E, -OC43) reactive T cells after stimulation with spike and nucleocapsid peptide pools and analyzed cytokine polyfunctionality (IFNγ, TNFα, and IL-2) in seropositive and seronegative convalescent COVID-19 patients as well as in unexposed healthy controls. Stimulation with SARS-CoV-2 spike and nucleocapsid (NCAP) as well as HCoV spike peptide pools elicited a similar T cell response in seropositive and seronegative post COVID-19 patients. Significantly higher frequencies of polyfunctional cytokine nucleocapsid reactive CD4+ T cells (triple positive for IFNγ, TNFα, and IL-2) were observed in both, seropositive (p = 0.008) and seronegative (p = 0.04), COVID-19 convalescent compared to healthy controls and were detectable up to day 162 post RT-PCR positivity in seronegative convalescents. Our data indicate an important role of NCAP-specific T cells for viral control.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , COVID-19/immunology , Coronavirus 229E, Human/physiology , SARS-CoV-2/physiology , Adult , COVID-19 Serological Testing , Cells, Cultured , Convalescence , Coronavirus Nucleocapsid Proteins/immunology , Female , Humans , Lymphocyte Activation , Male , Middle Aged , Spike Glycoprotein, Coronavirus/immunology
8.
Heliyon ; 7(8): e07665, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1330844

ABSTRACT

People with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) often report a high frequency of viral infections and flu-like symptoms during their disease course. Given that this reporting agrees with different immunological abnormalities and altered gene expression profiles observed in the disease, we aimed at answering whether the expression of the human angiotensin-converting enzyme 2 (ACE2), the major cell entry receptor for SARS-CoV-2, is also altered in these patients. In particular, a low expression of ACE2 could be indicative of a high risk of developing COVID-19. We then performed a meta-analysis of public data on CpG DNA methylation and gene expression of this enzyme and its homologous ACE protein in peripheral blood mononuclear cells and related subsets. We found that patients with ME/CFS have decreased methylation levels of four CpG probes in the ACE locus (cg09920557, cg19802564, cg21094739, and cg10468385) and of another probe in the promoter region of the ACE2 gene (cg08559914). We also found a decreased expression of ACE2 but not of ACE in patients when compared to healthy controls. Accordingly, in newly collected data, there was evidence for a significant higher proportion of samples with an ACE2 expression below the limit of detection in patients than healthy controls. Altogether, patients with ME/CFS can be at a higher COVID-19 risk and, if so, they should be considered a priority group for vaccination by public health authorities. To further support this conclusion, similar research is recommended for other human cell entry receptors and cell types, namely, those cells targeted by the virus.

9.
Social Work & Christianity ; 48(1):3-4, 2021.
Article in English | CINAHL | ID: covidwho-1111000

ABSTRACT

An introduction is presented in which the editor discusses articles in the issue on topics including protests against racial injustice;COVID-19 pandemic;and Christians in social work.

10.
Front Immunol ; 11: 607918, 2020.
Article in English | MEDLINE | ID: covidwho-1021890

ABSTRACT

The inability of patients with CVID to mount specific antibody responses to pathogens has raised concerns on the risk and severity of SARS-CoV-2 infection, but there might be a role for protective T cells in these patients. SARS-CoV-2 reactive T cells have been reported for SARS-CoV-2 unexposed healthy individuals. Until now, there is no data on T cell immunity to SARS-CoV-2 infection in CVID. This study aimed to evaluate reactive T cells to human endemic corona viruses (HCoV) and to study pre-existing SARS-CoV-2 reactive T cells in unexposed CVID patients. We evaluated SARS-CoV-2- and HCoV-229E and -OC43 reactive T cells in response to seven peptide pools, including spike and nucleocapsid (NCAP) proteins, in 11 unexposed CVID, 12 unexposed and 11 post COVID-19 healthy controls (HC). We further characterized reactive T cells by IFNγ, TNFα and IL-2 profiles. SARS-CoV-2 spike-reactive CD4+ T cells were detected in 7 of 11 unexposed CVID patients, albeit with fewer multifunctional (IFNγ/TNFα/IL-2) cells than unexposed HC. CVID patients had no SARS-CoV-2 NCAP reactive CD4+ T cells and less reactive CD8+ cells compared to unexposed HC. We observed a correlation between T cell reactivity against spike of SARS-CoV-2 and HCoVs in unexposed, but not post COVID-19 HC, suggesting cross-reactivity. T cell responses in post COVID-19 HC could be distinguished from unexposed HC by higher frequencies of triple-positive NCAP reactive CD4+ T cells. Taken together, SARS-CoV-2 reactive T cells are detectable in unexposed CVID patients albeit with lower recognition frequencies and polyfunctional potential. Frequencies of triple-functional reactive CD4+ cells might provide a marker to distinguish HCoV cross-reactive from SARS-CoV-2 specific T cell responses. Our data provides evidence, that anti-viral T cell immunity is not relevantly impaired in most CVID patients.


Subject(s)
Antibodies, Viral/blood , Common Variable Immunodeficiency/immunology , Coronaviridae/immunology , Immunoglobulin G/blood , T-Lymphocytes/immunology , Adult , Aged , Common Variable Immunodeficiency/blood , Cross Reactions , Cytokines/immunology , Female , Humans , Male , Middle Aged , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL